Preliminary communication

Reductive elimination of dimethylcarbonate from (dimethoxycarbonyl)tricarbonyl cobaltates. Isolation and crystal structures of Cs[Co(COOCH₃)₂(CO)₃] and K[(dibenzo-18-crown-6)][Co(COOCH₃)₂(CO)₃] *

Giuseppe Fachinetti, Tiziana Funaioli

Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy)

Dante Masi and Carlo Mealli

Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, CNR, Via J. Nardi 39, 50132 Firenze (Italy)

(Received March 4th, 1991)

Abstract

Salts of the anion $[Co(COOCH_3)_2(CO)_3]^-$ with Cs⁺ and K⁺ (with the latter cation complexed by dibenzo-18-crown-6 ether) have been isolated and structurally characterized. In the trigonal bipyramidal cobaltate two C-coordinated COOCH₃ groups occupy *trans*-axial positions. There are ionic interactions between the cation and the terminal oxygen atoms of methoxycarbonyl involving both of the coordinated COOCH₃ groups in the case of the Cs salt but only one of them in the case of the K salt. One methoxy group of the anion $[Co(COOCH_3)_2(CO)_3]^-$ is strongly nucleophilic, as shown by the reactions with $Co_2(CO)_8$ or CO_2 . Under an inert atmosphere $[Co(COOCH_3)_2(CO)_3]^-$ undergoes elimination of dimethylcarbonate.

The oxidative carbonylation of alcohols to give dialkyloxalates represents a step in a syngas-based route to ethylene glycol. The alcohol/CO coupling has been accomplished only with palladium-based catalysts and the intermediates appear to be (dialkoxycarbonyl)-complexes that can undergo reductive elimination of dialkyl oxalates [1]. Most often, however, the elimination of dialkyloxalates requires the action of oxidizing agents, which also give some organic side products [2,3].

We now report the isolation and the characterization of the anionic (dialkoxycarbonyl)-complex $[Co(COOCH_3)_2(CO)_3]^-$ as its cesium (1) and potassium [dibenzo-18-crown-6] (2) salt, and on the selective elimination of dimethylcarbonate from it.

Compound 1 is formed in quantitative yield by adding $CsOCH_3$ to a THF solution of $Co(COOCH_3)(CO)_4$ (3) [4] at room temperature under a CO atmosphere

^{*} Dedicated to the memory of Piero Pino.

(eq. 1). Colorless crystals are obtained by adding $(C_2H_5)_2O$ to the solution. Pályi et al. [5] previously suggested the existence of the anion 1 on the basis of IR spectroscopy after they carried out a reaction similar to eq. 1 but with NaOCH₃ in the presence of 15-crown-5. However, further characterization was prevented by the fast thermal decomposition of the product. It is now evident that the stability of 1 is strongly dependent upon the CO pressure and on the nature of the cation.

$$Co(COOCH_3)(CO)_4 + CsOCH_3 \xrightarrow{CO \text{ atm.}} Cs[Co(COOCH_3)_2(CO)_3]$$
(1)
(3) (1)

The structure of Cs[Co(COOCH₃)₂(CO)₃] was determined by X-ray diffraction [6*]. Each anion (Fig. 1) is almost trigonal bipyramidal, with two η^1 -coordinated alkoxycarbonyl groups in axial positions. The average Co-COOCH₃ bond, 1.96(2) Å, is ca. 0.2 Å longer than the average Co-CO bond, suggesting that there is very little Co(d_{π})-C(p_{π}) interaction with the alkoxycarbonyl groups. Although the two CO₂ planes are skew by ca. 30°, the two methoxy groups are closer to an eclipsed than to a staggered disposition. This is probably a consequence of the stabilizing ionic interactions that each Cs⁺ cation forms with the terminal oxygen atoms of COOCH₃ from four different complex anions. The contacts are short [in the range 3.00(1) and 3.07(1) Å] and involve equally the *trans*-methoxycarbonyl groups of any anion. The latter feature is fully consistent with the unique broad band at ca. 1610 cm⁻¹ observed in the IR spectrum of the solid.

By contrast this band is split into two bands (at 1600 and 1635 cm⁻¹) in the spectrum recorded for a THF solution of 1, suggesting that only one methoxycarbonyl group is preferentially involved in ion pairing. To confirm this we also studied the structure [8*] of [K(dibenzo-18-crown-6)][Co(COOCH₃)₂(CO)₃] (2), which in the solid state shows IR bands at 1600 and 1625 cm⁻¹. The gross structural features of cobaltate in 2 are not very different from those in 1 (Fig. 2), but it is evident that a terminal oxygen atom of a COOCH₃ group forms a bond with the K⁺ ion surrounded by the crown ether [K-O(5) = 2.77(1) Å]. The Co-C-O-K bonding network compares well with that present in the compound [Co(ⁿPrsalen)K(CO₂)(THF)_n], a rare M- η^1 -CO₂ adduct [9]. In 2 the *trans*-axial COOCH₃ groups are almost staggered, and the group free from ion pairing with K⁺ can strongly vibrate, as shown by the appearance of two peaks for the terminal oxygen atom in the ΔF maps.

Neutral (dialkoxycarbonyl)-complexes lose one methoxy group when reacted with strong electrophiles such as CF₃SO₃CH₃ and C₃SO₃H [10]. In the case of 1 one methoxy group leaves readily, and is strongly nuclephilic; e.g., 1 reacts with equimolar amounts of Co₂(CO)₈ in THF solution under a CO atmosphere to give $[Co(CO)_4]^-$ and 3 (see eq. 2).

$$Cs[Co(COOCH_3)_2(CO)_3] + Co_2(CO)_8 + CO \rightarrow$$

$$2Co(COOCH_3)(CO)_4 + Cs[Co(CO)_4]$$
(2)

^{*} Reference number with asterisk indicates a note in the list of references.

Fig. 1. A cesium cation forms short contacts [in the range 3.00-3.07(9) Å] with terminal oxygen atoms of methoxycarbonyl groups from four different [Co(COOCH₃)₂(CO)₃]⁻ anions. Selected bond distances (Å): Co-C(1) 1.76(2), Co-C(2) 1.80(2), Co-C(3) 1.75(2), Co-C(4) 1.96(1), Co-C(5) 1.96(1), C-O (carbonyl) 1.15(3) ave., C(4)-O(4) 1.21(2), C(4)-O(5) 1.37(2), C(5)-O(6) 1.24(1), C(5)-O(7) 1.33(1), C(6)-O(7) 1.46(1). Angles (°): C(4)-Co-C(5) 177.7(5), O(4)-C(4)-O(5) 118.6(1.1), O(6)-C(5)-O(7) 119.0(1.1), C(4)-O(5)-C(7) 118.4(1.0), C(5)-O(7)-C(6) 117.4(1.1).

Furthermore, a THF solution of 1 reacts instantaneously with carbon dioxide to give 3, along with a precipitate of CsOCOOCH₃.

Finally, 1 undergoes selective elimination of dimethylcarbonate (eq. 3). The reaction is complete in 3 hours at room temperature under an inert atmosphere; it is

Fig. 2. Drawing of the adduct [K(dibenzo-18-crown-6)][Co(COOCH₃)₂(CO)₃] (2). Selected bond distances (Å): Co-C(1) 1.83(2), Co-C(2) 1.80(2), Co-C(3) 1.78(2), Co-C(4) 1.97(1), Co-C(5) 1.93(3), C-O (carbonyl) 1.10(3) ave., C(4)-O(4) 1.37(2), C(4)-O(5) 1.19(2), C(5)-O(6) 1.29(1), C(5)-O(7) 1.43(4), C(7)-O(6) 1.44(2). Angles (°): C(4)-Co-C(5) 175.2(8), O(4)-C(4)-O(5) 117(2), O(6)-C(5)-O(7) 116(2), C(4)-O(4)-C(6) 116(2), C(5)-O(6)-C(7) 122(2).

first order with respect to 1 and is inhibited by CO. These features favour the intermediacy of a methoxy(methoxycarbonyl)cobalt tricarbonyl complex formed by loss ("deinsertion") of CO from the CH₃OOC ligand in 1.

$$Cs[Co(COOCH_3)_2(CO)_3] \xrightarrow{THF} CO(OCH_3)_2 + Cs[Co(CO)_4]$$
(3)

Supplementary material. Lists of atomic coordinates, and bond distances and angles will be deposited with Cambridge Crystallographic Data Center.

References and notes

- 1 F. Rivetti and U. Romano, Chim. Ind., 62 (1980) 7.
- 2 H.E. Brynzda, S.A. Kretchmar and T.H. Tulip, J. Chem. Soc., Chem. Commun., (1985) 977.
- 3 P.L. Burk, D. Van Engen and K.S. Campo, Organometallics, 3 (1984) 493.
- 4 D. Milstein and J.L. Huckaby, J. Am. Chem. Soc., 104 (1982) 6150.
- 5 M. Tasi and G. Pályi, Organometallics, 4 (1985) 1523.
- 6 Crystal data $C_7H_6O_7Co_1Cs_1$: M = 393.96, monoclinic, $P2_1/c$, a = 11.868(4), b = 13.611(5), c = 7.634(3) Å, $\beta = 104.07(2)^\circ$, V = 1196.27 Å³, Z = 4, $d_{calc} = 2.187$ g cm⁻³, F(000) = 744, $\lambda(Mo-K_{\alpha}) = 0.7107$, $\mu(Mo-K_{\alpha}) = 44.2$. A crystal, sealed in a capillary with dimensions $0.1 \times 0.2 \times 0.3$ mm³ was mounted on a CAD4 diffractometer. Intensities were collected up to $2\theta = 60^\circ$ [3803 measured reflections of which 1251 had intensities $I > 3\sigma(I)$]. The structure was solved by Patterson and Fourier methods. Empirical absorption corrections were made [7] with min.-max. absorption of 0.69-0.89. All of the non-hydrogen atoms were refined anisotropically. Final R and R_w values were 0.049 and 0.051, respectively.
- 7 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, A39 (1983) 158.
- 8 Crystal data $C_{27}H_{30}O_{13}Co_{1}K_{1}$: M = 660.56, triclinic $P\overline{1}$, a = 15.955(4), b = 11.208(5), c = 9.435(3) Å, $\alpha = 66.53(2)$, $\beta = 77.97(2)$, $\gamma = 80.64(2)^{\circ}$, V = 1507.6 Å³, Z = 2, $d_{calc} = 2.910$ g cm⁻³, F(000) = 1368, $\lambda(Cu-K_{\alpha}) = 1.5418$, $\mu(Cu-K_{\alpha}) = 129.2$. A crystal, sealed in a capillary with dimensions $0.1 \times 0.1 \times 0.2$ mm³ was mounted on a PW 1100 diffractometer. Intensities were collected up to $2\theta = 110^{3}$ [3600 measured reflections, of which 1881 had intensities $I > 3\sigma(I)$]. The structure was solved by Patterson and Fourier methods. The empirical absorption coefficients, [7] are in the range 0.49-0.89. Co, K, O atoms were refined anisotropically. The present R and R_w values are 0.098 and 0.090, respectively. Attempts are still being made to solve the disorder associated with O7 (O8) atom.
- 9 G. Fachinetti, C. Floriani and P.F. Zanazzi, J. Am. Chem. Soc., 100 (1978) 7405.
- 10 H. Werner, L. Hofmann and R. Zolk, Chem. Ber., 120 (1987) 379.